Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 3(1): 113, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857858

RESUMEN

Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.

2.
Front Microbiol ; 13: 933404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992689

RESUMEN

Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype's distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.

4.
ISME J ; 14(9): 2275-2287, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457503

RESUMEN

Some cyanobacteria use light outside the visible spectrum for oxygenic photosynthesis. The far-red light (FRL) region is made accessible through a complex acclimation process that involves the formation of new phycobilisomes and photosystems containing chlorophyll f. Diverse cyanobacteria ranging from unicellular to branched-filamentous forms show this response. These organisms have been isolated from shaded environments such as microbial mats, soil, rock, and stromatolites. However, the full spread of chlorophyll f-containing species in nature is still unknown. Currently, discovering new chlorophyll f cyanobacteria involves lengthy incubation times under selective far-red light. We have used a marker gene to detect chlorophyll f organisms in environmental samples and metagenomic data. This marker, apcE2, encodes a phycobilisome linker associated with FRL-photosynthesis. By focusing on a far-red motif within the sequence, degenerate PCR and BLAST searches can effectively discriminate against the normal chlorophyll a-associated apcE. Even short recovered sequences carry enough information for phylogenetic placement. Markers of chlorophyll f photosynthesis were found in metagenomic datasets from diverse environments around the globe, including cyanobacterial symbionts, hypersaline lakes, corals, and the Arctic/Antarctic regions. This additional information enabled higher phylogenetic resolution supporting the hypothesis that vertical descent, as opposed to horizontal gene transfer, is largely responsible for this phenotype's distribution.


Asunto(s)
Clorofila , Cianobacterias , Regiones Antárticas , Regiones Árticas , Clorofila/análogos & derivados , Clorofila A , Cianobacterias/genética , Luz , Fotosíntesis , Filogenia
5.
Extremophiles ; 23(6): 635-647, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31512055

RESUMEN

The true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.


Asunto(s)
Aclimatación/fisiología , Evolución Biológica , Cianobacterias/fisiología , Manantiales de Aguas Termales/microbiología , Calor , Modelos Biológicos , Tricomas/fisiología
6.
Science ; 360(6394): 1210-1213, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29903971

RESUMEN

Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.


Asunto(s)
Clorofila/análogos & derivados , Cianobacterias/efectos de la radiación , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Clorofila/química , Clorofila/efectos de la radiación , Clorofila A , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Luz , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema II/química
7.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859320

RESUMEN

Cell differentiation is one of the marks of multicellular organisms. Terminally specialised nitrogen-fixing cells, termed heterocysts, evolved in filamentous cyanobacteria more than 2 Gya. The development of their spacing pattern has been thoroughly investigated in model organisms such as Anabaena sp. PCC 7120. This paper focuses on the more complex, branching cyanobacterium Mastigocladus laminosus (Stigonematales). Contrary to what has been previously published, a heterocyst spacing pattern is present in M. laminosus but it varies with the age of the culture and the morphology of the cells. Heterocysts in young, narrow trichomes were more widely spaced (∼14.8 cells) than those in old, wide trichomes (∼9.4 cells). Biochemical and transgenic experiments reveal that the heterocyst spacing pattern is affected by the heterocyst inhibitor PatS. Addition of the pentapeptide RGSGR (PatS-5) to the growth medium and overexpression of patS from Anabaena sp. PCC 7120 in M. laminosus resulted in the loss of heterocyst differentiation under nitrogen deprivation. Bioinformatics investigations indicated that putative PatS sequences within cyanobacteria are highly diverse, and fall into two main clades. Both are present in most branching cyanobacteria. Despite its more complex, branching phenotype, M. laminosus appears to use a PatS-based pathway for heterocyst differentiation, a property shared by Anabaena/Nostoc.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Anabaena/fisiología , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...